medford water commission 2018 WATER QUALITY ANALYSES

Annual test results of 2018 drinking water tests published April 2019 MEDFORD WATER COMMISSION 200 S. Ivy Street - Rm 177 Medford, Oregon 97501

Ph: 541.774.2430

water@medfordwater.org medfordwater.org Providing safe, high quality drinking water is Medford Water Commission's top priority. To ensure this objective, a comprehensive water quality program has been developed. This involves water treatment and testing, as well as measures aimed at assuring that our water resources are protected to the greatest extent possible.

The Commission also publishes an annual Consumer Confidence Report. While similar to this document, it does not include data on all parameters tested. Rather, it focuses on and provides additional details about contaminants that have been detected in our drinking water. You are encouraged to read that report for additional health related information.

WATER TREATMENT & QUALITY DIRECTOR Ben Klayman, PhD, PE

Medford Water Commission obtains its water from two high quality sources: Big Butte Springs (our primary source), located approximately thirty miles northeast of Medford, and the Rogue River (a supplemental source during peak summer demands).

Water from both of these sources is regularly tested for basic physical characteristics and a vast array of potential contaminants. The term "contaminant" refers to any substance that may be found in the water. All water, including bottled water, may contain small amounts of contaminants and their presence does not necessarily indicate a health concern.

The levels of certain contaminants are regulated by the U.S. Environmental Protection Agency (EPA) and administered by the Oregon Health Authority, Drinking Water Services. The drinking water standards are set into two categories; primary standards, called Maximum Contaminant Levels (MCLs), are mandatory and establish limits for various substances that have been found to adversely affect human health. Secondary standards relate to aesthetic qualities of the water but are not necessarily harmful, and are considered recommended guidelines.

This report provides a comprehensive listing of current test results, which consistently meet state and federal health standards. Where applicable, the tables indicate the MCL allowed in water. Those substances subject only to the secondary standard are identified with an asterisk (*). Definitions and explanations have also been included to provide assistance in understanding the tables.

GENERAL PARAMETERS @ EP					
Analyte	EP-Big Butte	EP-Duff WTP,		MCL or Standard	
	Springs	Rogue River	Level	Unit	
Free Chlorine Residual	0.5	0.6	4	ppm	
Temperature	8.7	14.0	N/A	Deg C	
рН	7.1	7.3	BBS >6.8 Duff >7.0	pH Units	
Specific Conductance	110	97	N/A	uS/cm	
Alkalinity as CaCO ₃	49	41	N/A	ppm	
Potassium	1.2	1.1	N/A	ppm	
Total Hardness as CaCO ₃	39	27	N/A	ppm	
Magnesium	4.9	2.6	N/A	ppm	
Calcium	7.6	6.3	N/A	ppm	
Silica, SiO ₂	38	28	N/A	ppm	
Sodium	6.6	5.0	20*	ppm	
Total Dissolved Solids	67	58	500*	ppm	
Total Organic Carbon	< 0.3	0.7	N/A	ppm	
Turbidity (Year Average)	0.3	0.03	N/A	NTU	
*Secondary standards					

MICROBIOLOGICAL ANALYSIS					
Analysia	MCL or Standard				
Analyte	Amount Detected	Level	Unit		
Total Coliform Bacteria ¹	Zero positive samples	٦	Т		
Total Microcystin	ND @ 0.30	N/A	ppb		
Anatoxin-a	ND @ 0.03	N/A	ppb		
Cylindrospermopsin ²	ND @ 0.09	N/A	ppb		

¹ Coliform bacteria are the primary measure of the microbial quality of drinking water. They are used as indicators of the possible presence of disease-causing microorganisms. The Commission has 55 microbiological sampling points established at representative locations throughout the water distribution system and collects a minimum of 90 samples each month. Over 1,000 samples were analyzed during 2018 and no coliforms were ever detected.

² Microcystin, Anatoxin, and Cylindrospermopsin are toxins produced by naturally occurring algae which tend to grow in warm, stagnant water. No algal toxin was detected in either our source or our finished water during 2018.

LEAD AND COPPER SAMPLING AT RESIDENTIAL WATER TAPS

Analyte	Amount Detected	MCL
Copper (2016 Results)	90th percentile value = 0.84 ppm No samples exceeded action level.	Action Level: 90% of the homes tested must have copper levels less than 1.3 parts per million.
Lead (2016 Results)	90th percentile value = 0.9 ppb No samples exceeded action level.	Action Level: 90% of the homes tested must have lead levels less than 15 parts per billion.

There is virtually no lead or copper in either of the Commission's water supply sources. However, since these metals can enter the drinking water supply through corrosion within the water distribution system or household plumbing, supplemental testing is conducted at the individual taps of customers whose plumbing meets criteria for being at risk for elevated lead and copper levels. Based on testing in representative home plumbing systems, it has been found that our water does not tend to promote the leaching of these minerals in amounts that would normally be considered a health concern.

AL (Action Level): The concentration of a contaminant, which if exceeded, triggers a treatment or other requirement that a water system must follow.

Chlorine Residual: In order to assure that protection from microorganisms occurs until drinking water reaches the customer's taps, chlorine should be present throughout the distribution system. The table indicates the average amount of chlorine present in the water from each source as it enters the distribution system. Chlorine residual is routinely tested for compliance at sampling locations dispersed throughout the water system

EP: Entry Point to the Distribution System

Hardness: A description of the mineral content of the water, typically measured by dissolved calcium carbonate (CaCO₃). The more hard the water, the less easily soap will lather. Typically ranging between 25 and 40 ppm, our water tends to be **moderately soft.** Hardness is sometimes given in grains per gallon, with our water generally having between 1.4 and 2.4 grains per gallon.

Inorganic Chemicals: A diverse group of substances generally derived from mineral sources.

MCL (Maximum Contaminant

Level): The maximum amount of a regulated substance allowed in drinking water.

µmhos/cm: Micromhos per centimeter, a measurement of conductivity (the ability to carry an electrical current). Dissolved minerals and salts will increase conductivity. Pure distilled water has a conductivity of 0 to 3 µmhos/cm, and the conductivity of finished drinking water in the U.S. generally ranges from 50 to 1500 µmhos/cm.

ND: Indicates that the contaminant was not detected in the water. Today's precise laboratory equipment detects substances at very low levels, but it is recognized that a substance could be present at an even lower level. Therefore, the results are given as "ND @" a specific testing level, typically well below the MCL.

pH: The degree of acidity or alkalinity of a solution. Values between 0 and 7 indicate acidity, those between 7 and 14 indicate alkalinity, and a value of 7 is neutral.

INORGANIC	CHEMICAL	S* @ EP

Analyte	EP-Big Butte	EP-Duff WTP,	MCL or S	Standard	
Analyte	Springs	Rogue River	Level	Unit	
Aluminum, Al	0.03	ND @ 0.01	0.05 to 0.2*	ppm	
Antimony, Sb	ND @ 0.0005	ND @ 0.0005	0.006	ppm	
Arsenic, As	ND @ 0.001	ND @ 0.001	0.01	ppm	
Barium, Ba	0.003	0.005	2	ppm	
Beryllium, Be	< 0.0006	< 0.0004	0.004	ppm	
Boron, B	ND @ 0.05	ND @ 0.05	N/A	ppm	
Cadmium, Cd	ND @ 0.0001	ND @ 0.0001	0.005	ppm	
Chloride, Cl	2.2	2.7	250*	ppm	
Chromium, Cr	ND @ 0.001	ND @ 0.001	0.1	ppm	
Copper, Cu	0.02	0.004	1.0*	ppm	
Cyanide, Cn	ND @ 0.003	ND @ 0.003	0.2	ppm	
Fluoride, F	ND @ 0.2	ND @ 0.2	4	ppm	
Iron, Fe	< .09	ND @ 0.015	0.3*	ppm	
Lead, Pb	< 0.0002	< 0.0002	0.015 AL	ppm	
Lithium, Li	ND @ 0.1	ND @ 0.1	N/A	ppm	
Manganese, Mn	ND @ 0.02	ND @ 0.02	0.05*	ppm	
Mercury, Hg	ND @ 0.0002	ND @ 0.0002	0.002	ppm	
Molybdenum, Mo	ND @ 0.001	ND @ 0.001	N/A	ppm	
Nickel, Ni	ND @ 0.0005	ND @ 0.0005	0.1	ppm	
Nitrate, NO ₃	ND @ 0.2	ND @ 0.2	10	ppm	
Nitrite, NO ₂	ND @ 0.05	ND @ 0.05	1	ppm	
Selenium, Se	ND @ 0.001	ND @ 0.001	0.05	ppm	
Silver, Ag	ND @ 0.0001	ND @ 0.0001	0.1*	ppm	
Sulfate, SO ₄	1.4	1.0	250*	ppm	
Thallium, Tl	ND @ 0.0005	ND @ 0.0005	0.002	ppm	
Vanadium, V	0.013	0.002	N/A	ppm	
Zinc, Zn	ND @ 0.05	ND @ 0.05	5*	ppm	
*Secondary standa	ards				

*Secondary standards

DISINFECTION BYPRODUCTS & PRECURSORS

Analyte	Min	Max	Running AVG	MCL	Unit
HAA5	ND @ 3.0	16	4.7	60	ppb
HAA6	ND @ 0.2	1.4	0.6	N/A	ppb
HAA9	ND @ 0.2	17	7.2	N/A	ppb
TTHMs	ND @ 0.5	19	9.5	80	ppb
Bromate	ND @ 5.0	ND @ 5	ND	10	ppb

RADIOLOGICALS					
Analyte	EP-Big Butte	EP-Duff WTP,	MCL or S	r Standard	
Analyte	Springs	Rogue River	Level	Unit	
Gross Alpha	ND @ 3	ND @ 3	15	pCi/L	
Radium 226	ND @ 1	ND @ 1	N/A	pCi/L	
Radium 228	ND @ 1	ND @ 1	N/A	pCi/L	
Radon 222	88	N/A	N/A	pCi/L	
Uranium	ND @ .01	ND @ .01	30 µgl	μgl	

Analyte	EP-Big Butte	EP-Duff WTP,	MCL or a	Standard
Analyte	Springs	Rogue River	Level	Unit
Benzene	ND @ 0.0005	ND @ 0.0005	0.005	ppm
1,2,4-Trichlorobenzene	ND @ 0.0005	ND @ 0.0005	0.07	ppm
Ethylbenzene	ND @ 0.0005	ND @ 0.0005	0.7	ppm
Monochlorobenzene	ND @ 0.0005	ND @ 0.0005	0.1	ppm
m-Dichlorobenzene	ND @ 0.0005	ND @ 0.0005	N/A	ppm
o-Dichlorobenzene	ND @ 0.0005	ND @ 0.0005	0.6	ppm
p-Dichlorobenzene	ND @ 0.0005	ND @ 0.0005	0.075	ppm
Bromobenzene	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Carbon Tetrachloride	ND @ 0.0005	ND @ 0.0005	0.005	ppm
Chloroethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Chloroform	ND @ 0.0005	0.006	N/A	ppm
1,1-Dichloroethane	ND @ 0.0005	ND @ 0.0005	0.005	ppm
1,2-Dichloroethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,1,1-Trichloroethane	ND @ 0.0005	ND @ 0.0005	0.2	ppm
1,1,2-Trichloroethane	ND @ 0.0005	ND @ 0.0005	0.005	ppm
1,1,1,2- Tetrachloroethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,1,2,2- Tetrachloroethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,1-Dichloroethylene	ND @ 0.0005	ND @ 0.0005	0.007	ppm
cis-1,2- Dichloroethylene	ND @ 0.0005	ND @ 0.0005	0.07	ppm
trans-1,2- Dichloroethylene	ND @ 0.0005	ND @ 0.0005	0.1	ppm
Trichloroethylene	ND @ 0.0005	ND @ 0.0005	0.005	ppm
Tetrachloroethylene	ND @ 0.0005	ND @ 0.0005	0.005	ppm
Bromomethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Dibromomethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Chloromethane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Dichloromethane	ND @ 0.0005	ND @ 0.0005	0.005	ppm
Bromodichloromethane	ND @ 0.0005	0.00056	N/A	ppm
Dibromochloromethane	ND @ 0.0005	0.0018	N/A	ppm
MTBE	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Dibromochloropropane (DBCP)	ND @ 0.0000202	ND @ 0.0000202	0.0002	ppm
1,2-Dichloropropane	ND @ 0.0005	ND @ 0.0005	0.005	ppm
1,3-Dichloropropane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
2,2-Dichloropropane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,2,3-Trichloropropane	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,1-Dichloropropene	ND @ 0.0005	ND @ 0.0005	N/A	ppm
1,3-Dichloropropene	ND @ 0.0005	ND @ 0.0005	N/A	ppm
Styrene	ND @ 0.0005	ND @ 0.0005	0.1	ppm
Toluene	ND @ 0.0005	ND @ 0.0005	1	ppm
o-Chlorotoluene	ND @ 0.0005	ND @ 0.0005	N/A	ppm
p-Chlorotoluene	ND @ 0.0005	ND @ 0.0005	0.6	ppm
Vinyl Chloride	ND @ 0.0005	ND @ 0.0005	0.002	ppm
Xylenes, Total	ND @ 0.0005	ND @ 0.0005	0.002	ppm

pCi/L: Picocuries per liter, a measure of radioactivity.

ppm, ppb: These refer to the amount of a contaminant found per increment of water. With increasing technology, contaminants can be detected in extremely small quantities. One ppm (part per million) means that one part of a particular substance is present for every million (1,000,000) parts of water. Similarly, ppb (parts per billion) indicates the amount of a contaminant per billion (1,000,000,000) parts of water.

Radiologicals: An evaluation of radiant energy emitted from certain minerals as they disintegrate. It can be released from the ground and from water that has been exposed to such substances.

Secondary Standards:

Denoted in tables with an asterisk (*). The suggested maximum amount of a substance, but not a regulatory requirement.

Synthetic Organic Chemicals: Pesticide/herbicide compounds, most often present in areas of intensive agriculture.

TTHMs (Total Trihalomethanes), HAA5s (Haloacetic Acids) & Bromate: Compounds that can result from chemical reactions between organic material and chlorine or bromide and ozone. These are collectively called Disinfection Byproducts (DBPs). The disinfection processes are carefully monitored to keep DBPs to a minimum while still ensuring that sufficient disinfection is achieved.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

SYNTHETIC ORGANIC CHEMICALS¹ @ EP

	EP-Big Butte	EP-Duff WTP,	MCL or Standard		
Analyte	Springs	Rogue River	Level	Unit	
2,4,5-TP (Silvex)	ND @ 0.005	ND @ 0.005	0.05	ppm	
2,4-D	ND @ 0.001	ND @ 0.001	0.07	ppm	
Alachlor	ND @ 0.0002	ND @ 0.0002	0.002	ppm	
Aldicarb	ND @ 0.004	ND @ 0.004	N/A	ppm	
Aldicarb sulfone	ND @ 0.004	ND @ 0.004	N/A	ppm	
Aldicarb sulfoxide	ND @ 0.004	ND @ 0.004	N/A	ppm	
Aldrin	ND @ 0.00001	ND @ 0.00001	N/A	ppm	
Atrazine	ND @ 0.0003	ND @ 0.0003	0.003	ppm	
Baygon	ND @ 0.004	ND @ 0.004	N/A	ppm	
Benzo(a) pyrene	ND @ 0.00004	ND @ 0.00004	0.0002	ppm	
Butachlor	ND @ 0.0003	ND @ 0.0003	N/A	ppm	
Carbaryl	ND @ 0.004	ND @ 0.004	N/A	ppm	
Carbofuran	ND @ 0.004	ND @ 0.004	0.04	ppm	
3-Hydroxycarbofuran	ND @ 0.004	ND @ 0.004	0.07	ppm	
Chlordane	ND @ 0.00025	ND @ 0.00025	0.002	ppm	
Dalapon	ND @ 0.005	ND @ 0.005	0.2	ppm	
bis(2-Ethylhexyl)adipate	ND @ 0.004	ND @ 0.004	0.4	ppm	
bis(2-ethylhexyl)phthalate	ND @ 0.002	ND @ 0.002	0.006	ppm	
Dicamba	ND @ 0.005	ND @ 0.005	N/A	ppm	
Dieldrin	ND @ 0.00001	ND @ 0.00001	N/A	ppm	
Dinoseb	ND @ 0.0005	ND @ 0.0005	0.007	ppm	
Diquat	ND @ 0.002	ND @ 0.002	0.02	ppm	
Endothall	ND @ 0.01	ND @ 0.01	0.1	ppm	
Endrin	ND @ 0.00001	ND @ 0.00001	0.002	ppm	
Ethylene dibromide (EDB)	ND @ 0.0005	ND @ 0.0005	0.7	ppm	
gamma-BHC (Lindane)	ND @ 0.00001	ND @ 0.00001	0.0002	ppm	
Glyphosate	ND @ 0.05	ND @ 0.05	0.7	ppm	
Heptachlor epoxide	ND @ 0.00001	ND @ 0.00001	0.0002	ppm	
Heptachlor	ND @ 0.00001	ND @ 0.00001	0.0004	ppm	
Hexachlorobenzene (HCB)	ND @ 0.0001	ND @ 0.0001	0.001	ppm	
Hexachlorocyclopentadiene	ND @ 0.005	ND @ 0.005	0.05	ppm	
Methomyl	ND @ 0.004	ND @ 0.004	N/A	ppm	
Methoxychlor	ND @ 0.0001	ND @ 0.0001	0.04	ppm	
Metolachlor	ND @ 0.0004	ND @ 0.0004	N/A	ppm	
Metribuzin	ND @ 0.0004	ND @ 0.0004	N/A	ppm	
Oxamyl (Vydate)	ND @ 0.004	ND @ 0.004	0.2	ppm	
Pentachlorophenol	ND @ 0.0001	ND @ 0.0001	0.001	ppm	
Picloram	ND @ 0.005	ND @ 0.005	0.5	ppm	
Polychlorinated biphenyls (PCBs)	ND @ 0.00025	ND @ 0.00025	0.0005	ppm	
Propachlor	ND @ 0.0004	ND @ 0.0004	N/A	ppm	
Simazine	ND @ 0.0004	ND @ 0.0004	0.004	ppm	
Toxaphene	ND @ 0.0003	ND @ 0.0003	0.003	ppm	
¹ Synthotic Organic Chomicals	with NI/A an the NA	51			

¹ Synthetic Organic Chemicals with N/A as the MCL are currently unregulated.

ADDITIONAL UNREGULATED CONTAMINANTS @ EP					
	EP-Big	EP-Duff	MCL or Standard		
Analyte	Butte Springs	WTP, Rogue River	Level	Unit	
Chromium 6	0.2	0.1	N/A	ppb	
Chlorate	38	440	N/A	ppb	
Strontium	71	53	N/A	ppb	
PFOS	ND @ 0.02	ND @ 0.02	N/A	ppb	
PFOA	ND @ 0.04	ND @ 0.04	N/A	ppb	
germanium	ND @ 0.3	ND @ 0.3	N/A	ppb	
alpha- hexachlorocyclohexane	ND @ 0.01	ND @ 0.01	N/A	ppb	
chlorpyrifos	ND @ 0.03	ND @ 0.03	N/A	ppb	
dimethipin	ND @ 0.2	ND @ 0.2	N/A	ppb	
Ethoprop	ND @ 0.03	ND @ 0.03	N/A	ppb	
Oxyfluorfen	ND @ 0.05	ND @ 0.05	N/A	ppb	
Profenofos	ND @ 0.3	ND @ 0.3	N/A	ppb	
Tebuconazole	ND @ 0.2	ND @ 0.2	N/A	ppb	
total permethrin (cis- & trans-)	ND @ 0.04	ND @ 0.04	N/A	ppb	
tribufos	ND @ 0.07	ND @ 0.07	N/A	ppb	
butylated hydroxyanisole	ND @ 0.03	ND @ 0.03	N/A	ppb	
o-toluidine	ND @ 0.007	ND @ 0.007	N/A	ppb	
quinoline	ND @ 0.02	ND @ 0.02	N/A	ppb	
1-butano	ND @ 2.0	ND @ 2.0	N/A	ppb	
2-methoxyethanol	ND @ 0.4	ND @ 0.4	N/A	ppb	
2-propen-1-ol	ND @ 0.5	ND @ 0.5	N/A	ppb	

Turbidity: an expression of optical clarity in water. Turbidity itself has no health effects, but it can interfere with disinfection and provide a medium for microbial growth. It can also be an indicator of microorganisms. While turbidity measurement is not required of groundwater, Big Butte Springs is continuously monitored for turbidity.

Unregulated Contaminants:

EPA requires systems to monitor for contaminants that are not yet regulated but may be regulated in the future.

Volatile Organic Chemicals (VOCs):

Includes fuels and various solvents that tend to vaporize or be unstable in the environment.

<: Less than >: Greater than

Additional water quality information may be obtained from the following:

MEDFORD WATER COMMISSION WATER QUALITY (541) 774-2430 medfordwater.org

JACKSON COUNTY ENVIRONMENTAL PUBLIC HEALTH SERVICES (541) 774-8206 jacksoncountyor.org

OREGON HEALTH AUTHORITY DRINKING WATER SERVICES

(971) 673-0405 oregon.gov/oha/ph/ healthyenvironments/ drinkingwater

U.S. ENVIRONMENTAL PROTECTION AGENCY SAFE DRINKING WATER HOTLINE (800) 426-4791 water.epa.gov/drink

MEDFORD WATER COMMISSION

Established in 1922 and governed by the Board of Water Commissioners.

COMMISSIONERS John Dailey · Daniel Bunn Rick Whitlock · Greg Jones · Jason Anderson

GENERAL MANAGER Brad Taylor Serving Partner Cities: Medford, Central Point, Eagle Point, Jacksonville, Phoenix, Talent and Ashland* *Emergency Intertie Only

Also serving the White City area and the following water districts: Elk City and Charlotte Ann